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Abstract. We consider the SU(2) Quasilocal Quark Model of the NJL-type including vector and axial-
vector four-fermion interaction vertices with derivatives. The mass spectrum and a set of model-
independent relations for the ground and first-excited states are calculated. The chiral-symmetry restora-
tion sum rules in these channels are imposed for matching to QCD at intermediate energies in order to get
a number of constraints on parameters of the SU(2) QQM.

PACS. 12.40.Yx Hadron mass models and calculations

1 Introduction and motivation

One of the important problems of hadron physics is the
description of low-energy spectral characteristics for light
vector (V) and axial-vector (A) mesons as this sector is
related to a number of physical observables. In particular,
recent experimental data of ALEPH [1] and OPAL [2] col-
laborations on hadronic τ -decays indicate that, in order to
check both perturbative and non-perturbative QCD fea-
tures, it is necessary to take into account more degrees
of freedom in vector channels for the VV-AA correlation
functions. Namely, in [3] an analysis has been performed
of experimental data obtained by the ALEPH collabora-
tion for the correlation function difference ΠV − ΠA at
intermediate energies of ≤ 3 GeV. A small contribution of
the first radial excitations of vector mesons to ΠV −ΠA

can be seen experimentally, but the contribution of the
next ones is nearly negligible. Moreover, as is known from
the experimental data [4] and the theoretical investiga-
tions [5,6] there exists a series of heavier meson states,
ρ(1450), ρ(2150), ... whose quantum numbers are those of
the ρ(770)-meson and which represent radial excitations
of the ρ(770)-meson in terms of potential quark models.
In the axial-vector channel the excitations of the a1(1260)
resonance such as a1(1640) can exist; however, its mass
spectrum has not been yet accurately identified [4–7].

In order to describe the spectral characteristics of
VA-mesons and a set of the low-energy coupling con-
stants taking into account excited states, the Quasilocal
Quark Models (QQM) were introduced in [8]. The QCD-
motivated QQM are sufficiently general and allow rela-
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tively easily to get a wide set of the spectral-mass re-
lations for the vector and axial-vector mesons and their
excitations. Based on the quasilocal quark interactions re-
alized by higher-dimensional quark operators with deriva-
tives and on the Dynamical Chiral-Symmetry Breaking
(DCSB), additional meson states are created for suffi-
ciently strong-coupling constants.

Such a quasilocal approach (see also [9]) represents a
systematic extension of the NJL-model [10] towards the
complete effective action of QCD where many-fermion ver-
tices with derivatives possess the manifest chiral symme-
try of interaction, motivated by the soft momentum ex-
pansion of the perturbative QCD effective action. In the
effective action of the Quasilocal Quark Models of the NJL
type the low-energy gluon effects are hidden in the cou-
pling constants. Alternative schemes including the con-
densates of low-energy gluons can be found in [11].

At the same time in the large-Nc approach, which is
equivalent to planar QCD [12], the correlators for color-
singlet quark currents are saturated by narrow meson reso-
nances. On the other hand, their high-energy asymptotics
is provided [13] by the perturbation theory and the Op-
erator Product Expansion (OPE) due to asymptotic free-
dom of QCD. The differences of opposite-parity correla-
tors, which are zero in the chiral limit of perturbation the-
ory, reveal a fast decrease at large Euclidean momentum.
Thus, the chiral symmetry is restored at high energies.
Comparison of these two approaches allows to obtain a set
of Chiral-Symmetry Restoration (CSR) sum rules. Since
the QQM deals with a few low-lying resonances, the cor-
relators of the QQM can be matched [14] at intermediate
energies to the OPE of QCD correlators. This matching
realizes the correspondence to QCD and improves the pre-
dictability of the QQM at intermediate energies.
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In the present work the vector-axial-vector version of
SU(2) QQM is considered with two channels, where two
pairs of vector and axial-vector mesons are generated. Re-
spectively, it is expected to reproduce the lower part of the
QCD VA-meson spectrum in the planar limit and the lead-
ing asymptotics of chiral-symmetry restoration for higher
energies. In sect. 2 we define the VA SU(2) QQM with
two pairs of VA-mesons and the corresponding mass spec-
trum for VA boson states is obtained. With the help of the
four-resonance ansatz for VA-mesons the correlators of the
VA, SU(2) are matched to the OPE of QCD correlators
and a number of constraints on parameters of the QQM
from CSR sum rules are performed in sect. 3. We sum-
marize our results and conclusions concerning the further
development in sect. 4.

2 SU(2) Quasilocal Quark Model for the
vector and axial-vector mesons

The SU(2) QQM Lagrangian for the two-channel vector
and axial-vector case in the chiral limit mq = 0 has the
form [15] (in Euclidean space)

LVA = q̄i� ∂q +
1

4NfNcΛ2

×
2∑

k,l=1

bkl

[
q̄Γ i

V,kq · q̄Γ i
V,lq + q̄Γ i

A,kq · q̄Γ i
A,lq
]
, (1)

Γ i
V,k ≡ iγµfk(s)τ i, Γ i

A,k ≡ iγµγ5fk(s)τ i, i = 1, 2, 3 ,

where q ≡ qj (j is the number of flavors Nf ) are color
fermionic fields with Nc components, bkl represents the
symmetric non-singular matrix of real coupling constants,
and τ i denote Pauli matrices. The quantities fk(s), s →
−∂2/Λ2 are the form factors specifying the quasilocal in-
teraction. We accept the following sequence of action of
the derivatives for the Hermitian fermion currents:

q̄
∂2

Λ2
q =

1
4
q̄

(→
∂ − ←

∂

Λ

)2

q . (2)

In addition, let us regularize the interaction vertices by
introducing the momentum cutoff

q̄q −→ q̄θ(Λ2 + ∂2)q , (3)

and choose the polynomial form factors as being orthogo-
nal on the unit interval,∫ 1

0

fk(s)fl(s)ds = δkl . (4)

We select out here

f1(s) = 2 − 3s , f2(s) = −
√

3s . (5)

As this model interpolates the low-energy QCD action, it
is supplied with a cutoff Λ (of order of the CSB scale) for

virtual quark momenta in quark loops. It is convenient
to pass to the auxiliary vector (ρi

µ) and axial-vector (ai
µ)

fields,

Laux = q̄i� ∂q +
2∑

k=1

iq̄
(
Γ i
V,kρ

i
k,µ + Γ i

A,ka
i
k,µ

)
q

+NfNcΛ
2

2∑
k,l=1

(
ρi

k,µb
−1
kl ρ

i
l,µ + ai

k,µb
−1
kl a

i
l,µ

)
. (6)

After integrating out the quark fields〈
exp
(
−
∫

d4xL
)〉

q̄q

≡ exp(−Seff),

one comes to the bosonic effective action

Seff(ρi
µ,k, a

i
µ,k) = NfNcΛ

2

×
2∑

k,l=1

{ρi
k,µb

−1
kl ρ

i
l,µ + ai

k,µb
−1
kl a

i
l,µ} −NfNcTr ln �D|reg ,

�D ≡ i(� ∂ +M) + i
2∑

k=1

(
Γ i
V,kρ

i
k,µ + Γ i

A,ka
i
k,µ

)
, (7)

where we have introduced the dynamic mass function
M ≡∑k σkfk(s), with σk being the vacuum expectation
values of scalar fields [16]. We use the chirally invariant
regularization of the fermionic determinant

ln det �D = Trall ln �D −→ NfNcTr ln �D|reg ≡
1
2
NfNcTr ln

�D �D†

µ2
,

where the constant µ is a normalization scale for quark
fields and the trace “Tr” is assumed over all degrees of
freedom except the color and flavor ones. We will carry
out a further analysis in the mean-field approximation
(Nc 
 1). Expanding eq. (7) in boson fields and retaining
the quadratic in fields part only, one obtains

S
(2)
eff (ρi

µ,k, a
i
µ,k) =

1
2

∫
d4p

(2π)4

×
2∑

k,l=1

[ρi
k,µC

ρ,µν
kl ρi

l,ν + ai
k,µC

a,µν
kl ai

l,ν ]. (8)

The inverse propagators are defined by the corresponding
second variation of Seff(ρi

µ,k, a
i
µ,k):

C
(ρ,a)µν
kl = 2NfNcΛ

2b−1
kl δµν −NfNc

∫
d4q

(2π)4

× tr


(iγµ, iγµγ5)

fk

((
q+p/2

Λ

)2)
� q + 1

2 � p+ iM

× (iγν , iγνγ5)
fl

((
q−p/2

Λ

)2)
� q − 1

2 � p+ iM


 , (9)
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where the trace “tr” spans the Dirac indices only.
To obtain mass spectrum we expand expression (9) in

a small external momentum p (p2/Λ2 � 1) up to terms
∼ p2 and calculate the corresponding loop integral using
the momentum cutoff regularization. To compensate the
quadratic divergences in this integral, we parametrize the
matrix of coupling constants as follows:

16π2b−1
kl = δkl − 4

3
∆̄kl

Λ2
; ∆̄kl � Λ2. (10)

The general structure of (9) is

C
(ρ,a)µν
kl =

NfNc

12π2
[(
Â
(ρ,a)
kl p2 + B̂(ρ,a)

kl

)
δµν

− Â(ρ,a)
kl pµpν

]
+O

(
M2

0

Λ2

)
, (11)

where the two symmetric matrices —the kinetic term Â
and the momentum-independent part B̂— have been in-
troduced:

Â(ρ,a) ≡
(

4 ln Λ2

M2
0
− 15

2 −
√
3
2

−
√
3
2

3
2

)
, (12)

B̂ρ ≡
(−2∆̄11 −2∆̄12

−2∆̄12 −2∆̄22

)
, (13)

B̂a ≡
(−2∆̄11 + σ11 −2∆̄12 + σ12
−2∆̄12 + σ12 −2∆̄22 + σ22

)
, (14)

σ11 ≡ 24M2
0 ln

Λ2

M2
0

− 477
2
σ21 − 15

√
3σ1σ2 +

9
2
σ22 ,

σ12 ≡ −15
√

3
2
σ21 + 9σ1σ2 +

3
√

3
2
σ22 ,

σ22 ≡ 9
2
σ21 + 3

√
3σ1σ2 +

27
2
σ22 .

Here M0 ≡ M(0) = 2σ1 is the dynamic quark mass at
zero external momentum. The remaining logarithmic di-
vergences will be absorbed later by meson masses and
renormalization of meson fields.

The physical mass spectrum is defined by the secular
equation

det(Âp2 + B̂)(ρ,a) = 0 , m2
phys = −p20 . (15)

As will be seen further on the consistency with CSR sum
rules imposes the following scale condition:

∆̄kl = O
(
Λ2
)
. (16)

Using (12), (13), one has for eq. (15)

6
(

ln
Λ2

M2
0

− 2
)
p4 −

(
8 ln

Λ2

M2
0

∆̄22 − 15∆̄22

+ 3∆̄11 + 2
√

3∆̄12

)
p2 + 4 det ˆ̄∆ = 0, (17)

The solution of eq. (17) in the large-log approximation
ln Λ2

M2
0

 1 is as follows:

m2
ρ = − det ˆ̄∆

2 ln Λ2

M2
0
∆̄22

+ c1 +O

(
M2

0

ln Λ2

M2
0

)
, (18)

m2
ρ′ = −4

3
∆̄22 + δ + c2 +O

(
M2

0

ln Λ2

M2
0

)
. (19)

To obtain the A-meson mass spectrum, it is enough to
make the replacement (see eqs. (13), (14)) ∆̄kl → ∆̄kl −
1/2σkl. The result is

m2
a1

= − det ˆ̄∆
2 ln Λ2

M2
0
∆̄22

+ 6M2
0 + c1 +O

(
M2

0

ln Λ2

M2
0

)
, (20)

m2
a′
1

= −4
3
∆̄22 + 3σ̄ + δ + c2 +O

(
M2

0

ln Λ2

M2
0

)
. (21)

The prime labels everywhere the corresponding excited
meson state and we have introduced the notations

δ ≡ −
6m2

ρ ln Λ2

M2
0

+ d

6 ln Λ2

M2
0

, c1 ∼ c2 = O

(
Λ2

ln2 Λ2

M2
0

)
, (22)

d ≡ 3∆̄11 + 2
√

3∆̄12 + ∆̄22 ,

σ̄ ≡ σ21 +
2
√

3
3
σ1σ2 + 3σ22 > 0 . (23)

As is seen from eqs. (18)-(21) the scale of mass squared
for ground VA states is O(Λ2/ ln Λ2

M2
0

) and for excited ones
is O(Λ2). Thus, the excited states turn out to be logarith-
mically heavier than the ground ones as was for the scalar
(S) and pseudoscalar (P) case [16]. This qualitative prop-
erty is independent of any concrete choice of form factors.
Combining eqs. (18)-(21) with the corresponding results
in [16,17], one obtains

m2
a1

−m2
ρ = 6M2

0 +O

(
M2

0

ln Λ2

M2
0

)
=

3
2

(m2
σ −m2

π) +O

(
M2

0

ln Λ2

M2
0

)
, (24)

m2
a′
1
−m2

ρ′ = 3σ̄ +O

(
M2

0

ln Λ2

M2
0

)
=

3
2

(m2
σ′ −m2

π′) +O

(
M2

0

ln Λ2

M2
0

)
. (25)

In the large-log approach the last equalities in
eqs. (24), (25) do not depend on model parameters.
We note also that differences of masses squared both in
eq. (24) and in eq. (25) are of order O(M2

0 ), which in-
dicates the chiral-symmetry restoration at a scale over



114 The European Physical Journal A

1 GeV. It can be shown also by corresponding fits. Having
as input Λ = 1000 MeV and

M0 = 2σ1 = 320 MeV ,

〈q̄q〉 � −NcΛ
2

8π2
(σ1 −

√
3σ2) = −(250 MeV)3, (26)

one can fix

σ1 = 160 MeV , σ2 = −145 MeV . (27)

From eq. (25) one obtains the mass splittings

mσ′ −mπ′ ≈ 45 MeV , ma′
1
−mρ′ ≈ 60 MeV , (28)

which show a fast restoration of the chiral symmetry. We
confront the π′- and ρ′-mesons with the states [4] π(1300)
(mπ′ = 1300 ± 100 MeV) and ρ(1450) (mρ′ = 1465 ± 25
MeV) correspondingly. Then the QQM predicts the mass
of scalar state mσ′ in the energy region 1250–1450 MeV
and for the axial-vector state ma′

1
in the energy range

1500–1550 MeV. The former particle can be identified
with the scalar state f0(1500) [4–6,18,19]. Since the uni-
tarization effects are not taken into account, one should
compare the predictions with bare masses if they are esti-
mated somehow. For example, the bare mass of f0(1500)
is approximately 1230 MeV [6]. Moreover, the real scalar
resonances have an admixture of s̄s components, which
we do not consider here. The mass of the latter particle is
not yet finally established.

Equation (24) at mρ = 770 MeV gives ma1 = 1100
MeV, which is close to the prediction of the Weinberg
relation ma1 =

√
2mρ. The experimental data yield [4]

ma1 = 1230 ± 40 MeV, that is, the model prediction is
within the large-Nc approximation. On the other hand,
eq. (24) predicts the mass of the lightest scalar meson
to be about 650 MeV. This particle was often confronted
with the broad scalar state [4] f0(600). However, from the
modern point of view this broad state is regarded as a
dynamic resonance [6,19]. The mass of the ground scalar
meson in the model may be rather confronted with a bare
mass of the scalar state f0(980) [6], without an admixture
of s̄s quarks.

Let us comment the approximations used to derive the
meson mass spectrum: namely, the large-Nc and leading-
log approximations. The first one is equivalent [12] to the
neglect of meson loops. The second one fits well the quarks
confinement as quark-antiquark threshold contributions
are suppressed in two-point functions in the leading-log
approximation. The accuracy of this approximation is con-
trolled also by the magnitudes of higher-dimensional op-
erators neglected in the QQM, i.e. by the contributions of
heavy-mass resonances not included in the QQM. All these
approximations are mutually consistent. In particular, in
the effective action without gluons the quark confinement
should be realized with the help of an infinite number
of quasilocal vertices with higher-order derivatives. Then
the imaginary part of quark loops can be compensated and
their momentum dependence can eventually reproduce the
infinite sum of meson resonances in the large-Nc limit. If
the effective action is truncated with a finite number of

vertices and thereby deals with only a few resonances one
has to retain only a finite number of terms in the low-
momentum expansion of quark loops in the CSB phase,
with a non-zero dynamic mass.

3 Chiral-symmetry restoration sum rules and
constraints on parameters of QQM

In this section we exploit the constraints based on chiral-
symmetry restoration in QCD at high energies for the VA
SU(2) QQM. As was mentioned in the introduction, at
intermediate energies the correlators of the QQM can be
matched to the OPE of QCD correlators. In the large-
Nc limit the correlators of color-singlet quark currents are
saturated by narrow meson resonances. In particular, the
two-point correlators of vector and axial-vector quark cur-
rents are represented by the sum of related meson poles
in Euclidean space:

ΠC(p2) =
∫

d4x exp(ipx)〈q̄Γ q(x)q̄Γ q(0)〉 =

∑
n

ZC
n

p2 +m2
C,n

+DC
0 +DC

1 p
2, (29)

C ≡ V,A; Γ = γµ, γµγ5; D0,D1 = const .

The last two terms represent a perturbative contribution,
with D0 and D1 being contact terms required for the regu-
larization of infinite sums. On the other hand, their high-
energy asymptotics is provided [13] by the perturbation
theory and the operator product expansion due to asymp-
totic freedom of QCD. Therefrom, the above correlators
increase at large p2,

ΠC(p2) |p2→∞∼ p2 ln
p2

µ2
. (30)

When comparing the two expressions above, one concludes
that the infinite series of resonances with the same quan-
tum numbers should exist in order to reproduce the per-
turbative asymptotics.

Meantime the differences of correlators for opposite-
parity currents rapidly decrease at large momenta p2 →
∞ [13,20]

ΠV(p2) −ΠA(p2) ≡ ∆VA

p6
− m

2
0∆VA

p8
+O

(
1
p10

)
,

∆VA � −16παs〈q̄q〉2, (31)

where m2
0 = 0.8 ± 0.2 GeV2 [21] and we have defined in

the V, A channels

ΠV,A
µν (p2) ≡ (−δµνp

2 + pµpν)ΠV,A(p2). (32)

Therefore, the chiral symmetry is restored at high en-
ergies and difference (31) represents an order parameter of
chiral-symmetry breaking in QCD. As it decreases rapidly
at large momenta, one can perform the matching of QCD
asymptotics by means of few lowest-lying resonances. This
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procedure gives a number of constraints from the chiral-
symmetry restoration. They may be used both for obtain-
ing some additional bounds on the model parameters and
for calculating some decay constants.

Expanding the meson correlators (29) in powers of p2,
one arrives at the CSR sum rules∑

n

ZV
n −

∑
n

ZA
n = 4F 2

π ,∑
n

ZV
nm

2
V,n −

∑
n

ZA
nm

2
A,n = 0 ,

∑
n

ZV
nm

4
V,n−

∑
n

ZA
nm

4
A,n =∆VA ,

∑
n

ZV
nm

6
V,n−

∑
n

ZA
nm

6
A,n =−m2

0∆VA . (33)

The first two relations are the Weinberg sum rules. The
quantity Fπ is the pion decay constant (Fπ � 87 MeV in
the chiral limit) which is equal in the QQM, with the P-A
mixing effect being taken into account [15]:

F 2
π =

NfNcM
2
0m

2
ρ

4π2m2
a1

ln
Λ2

M2
0

+O(M2
0 ). (34)

For the model under consideration relation (34) fixes the
logarithm of the cutoff in terms of physical parameters.

The residues in resonance pole contributions in the
vector and axial-vector correlators have the structure,

Z(V,A)
n = 4f2(V,A),nm

2
(V,A),n , (35)

with f(V,A),n being defined as electromagnetic decay con-
stants.

We note that for the two-channel case the system (33)
can be solved explicitly. For example, for the inputs
〈q̄q〉 = −(250 MeV)3, m0 = 1000 MeV, mρ = 770 MeV,
ma1 = 1230 MeV,mρ′ = 1460 MeV,ma′

1
= 1640 MeV one

obtains fρ = 0.19, fa1 = 0.14, fρ′ = 0.11, fa′
1

= 0.06. Also
the constant fa1 turns out to be slightly larger than its
experimental value (fa1 = 0.10 ± 0.02) and the constants
fρ′ , fa′

1
are not known yet, the solution looks reasonable.

In particular, for the chiral constant L10 (see below) this
solution gives L10 = −6.25 · 10−3.

In order to get some constraints on parameters of VA
SU(2) QQM, we calculate the corresponding two-point
correlators by the variation of external sources for auxil-
iary boson fields. Let us show the appropriate scheme of
calculations for the V case. Taking into account the exter-
nal vector sources V i

k,µ, the Lagrangian reads as follows:

LV
aux = q̄

(
�D + i

2∑
k=1

Γ i
V,kV

i
k,µ

)
q

+NfNcΛ
2

2∑
k,l=1

ρi
k,µb

−1
kl ρ

i
l,µ .

After shifting the bosonic fields

ρi
k,µ −→ ρi

k,µ − V i
k,µ ,

and integrating over fermionic degrees of freedom, one
comes to the following effective action in external vector
sources:

SVeff(ρi
k,µ, V

i
k,µ) = −NfNcTr ln �D +NfNcΛ

2

×
∫

d4x
2∑

k,l=1

b−1
kl

{
ρi

k,µρ
i
l,µ − 2V i

k,µρ
i
l,µ + V i

k,µV
i
l,µ

}
.

Expanding Tr ln �D up to quadratic in fields terms, one has

S
(2)
eff (ρi

k,µ, V
i
k,µ) =

2∑
k,l=1

{
1
2
ρi

k,µC
(ρ)µν
kl ρi

l,ν

+NcΛ
2b−1

kl

[−2V i
k,µρ

i
l,µ + V i

k,µV
i
l,µ

]}
,

where C(ρ)µν
kl is given by eq. (11). Introducing the vectors

ρµ ≡
(
ρi
1,µ

ρi
2,µ

)
, Vµ ≡

(
V i
1,µ

V i
2,µ

)

and taking into account (10) (where we neglect the last
term), one integrates over ρµ with the result

12π2

NfNc
Seff(Vµ) = −9

8
(
Λ4 +O(Λ2)

)
V T

µ Ĥ
ρ
µνVν

+
3Λ2

4
V T

µ Vνδµν , (36)

Ĥρ
µν ≡

(
Âp2 + B̂ρ

)−1

Â
(
B̂ρ
)−1

× (−p2δµν + pµpν) +
(
B̂ρ
)−1

δµν . (37)

The last term in eq. (37) together with that in (36) form
a local term which will be cancelled by the same term in
the A case. Substituting the identity

q̄γµq =
1
2

(
q̄f1(s)γµq −

√
3 q̄f2(s)γµq

)
into the vector correlator

Πρ
µν(p2) = 4

∫
d4x exp(ipx)〈q̄γµq(x)q̄γνq(0)〉, (38)

the latter can be rewritten through the second variational
derivatives:

Π(ρ)
µν (p2) =

NfNc

12π2
[
Π

(ρ)
11 + 3Π(ρ)

22 − 2
√

3Π(ρ)
12

]
× (−δµνp

2 + pµpν) , (39)

Π̂(ρ) ≡
(
Âp2 + B̂ρ

)−1

Â
(
B̂ρ
)−1

. (40)

On the other hand, this correlator is parametrized as fol-
lows (see eq. (29)):

Π(ρ)
µν (p2) =

[
Zρ

p2 +m2
ρ

+
Zρ′

p2 +m2
ρ′

]
(−δµνp

2 + pµpν) .

(41)
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The comparison of (39) and (41) allows to obtain the cor-
responding residues (see eqs. (45)). In the mean-field ap-
proximation the vector correlator and residues can be cal-
culated exactly [22].

The A-mesons must be considered together with the
P ones due to the P-A mixing. The relevant term in the
effective action

S
(2)
eff (πi

k, a
i
k,µ) =

1
2

∫
d4p

(2π)4

2∑
k,l=1

2πi
kC

πa,µ
kl ai

l,µ ,

appears by virtue of the non-zero value of the correspond-
ing second variation of Seff(πi

k, a
i
k,µ):

Cπa,µ
kl = −NfNc

∫
d4q

(2π)4
tr


(iγ5)

fk

((
q+p/2

Λ

)2)
� q + 1

2 � p+ iM

× (iγµγ5)
fl

((
q+p/2

Λ

)2)
� q − 1

2 � p+ iM




= −4iNfNc

(2π)4

∫ d4qMfk
(

q2

Λ2

)
fl

(
q2

Λ2

)
[(
q+ 1

2p
)2+M2

] [(
q− 1

2p
)2+M2

]pµ

+O
(
p3M0

Λ2

)
. (42)

In order to exclude the mixing terms, one makes the shift
of the A fields:

ai
k,µ −→ ai

k,µ +Di
klπ

i
lpµ ,

with the elements Di
kl being defined by the requirement

of cancellation of P-A terms. This leads to changing the
kinetic matrix Âπ due to contribution of the longitudinal
A part:

Âπ −→ Âπ
ren =

×




4 m2
ρ

m2
a1

ln Λ2

M2
0

+O(1) −
√
3
2 +O

(
M2

0 ln Λ2

M2
0

Λ2

)

−
√
3
2 +O

(
M2

0 ln Λ2

M2
0

Λ2

)
3
2 +O

(
M2

0
Λ2

)

, (43)

where eq. (24) and the scale (16) have been exploited. It is
easy to check that the redefinition (43) does not influence
the mass spectrum of the P-mesons.

As a result, one finds the residues in the meson poles
for VA boson states:

4F 2
π � (m2

a1
−m2

ρ) δ

m2
ρm2

a1
m2

a′
1

Z1 , Z1 ≡ 3NcNf Λ4

16π2 ,

Zρ � 4F 2
π

m2
a1

m2
a1

−m2
ρ
,

(44)

Za1 � 4F 2
π

m2
ρ

m2
a1

−m2
ρ
, Zρ′ � Z1

m2
ρ′
, Za′

1
� Z1

m2
a′
1

, (45)

where δ is given by (22). In contrast to the situation in
the SP case, the residues in the VA poles are of the same
order of magnitude:

Zρ ∼ Za1 ∼ Zρ′ ∼ Za′
1

= O
(
Λ2
)
.

The statement (16) follows from the comparison of
eqs. (34), (44).

The first and the second sum rules are satisfied iden-
tically. The third one takes the form

Z1

(
m2

a′
1
−m2

ρ′

)
� 16παs〈q̄q〉2 or 3Z1σ̄ = −∆VA .

(46)
This relation represents the constraint on the vector

QQM parameters following from the OPE. We note that
the analog of eq. (46) in the scalar case [16] may be cast
into the form

NfNcΛ
4

2π2
(
m2

σ′ −m2
π′
) � 24παs〈q̄q〉2 or

3Z1σ̄ = −27
32
∆VA . (47)

The minor discrepancy between relations (46) and (47) is
about 16% and can be referred to the quality of the four-
resonance approximation. Combining eqs. (46), (47) one
can obtain two independent estimations of the quantity:

m2
a′
1
−m2

ρ′

m2
σ′ −m2

π′
≈
{

1.5 from QQM ,
1.8 from CSR . (48)

This shows that the saturation of two-point correlators by
four resonances is quite robust.

The fourth sum rule looks as follows in the large-log
approach [18]:

m2
a′
1
� m2

ρ′ � m2
0

2
or − 4

3
∆̄22 · 3σ̄ � −m

2
0∆VA

2Z1
. (49)

Numerical estimations [18] show that the last sum rule
fails for the QQM with the ground and first-excited sets
of VA-mesons.

The structure of Zρ′ and Za′
1

shows that if ma′
1
� mρ′

then Za′
1
� Zρ′ and, therefore, fa′

1
� fρ′ . Thus, these

residues approximately cancel each other in the sum rules
(in the large-log approach) and one arrives at the one-
channel results for fρ and fa1 [15] (see also [7]),

fρ � Fπma1

mρ

√
m2

a1
−m2

ρ

, fa1 � Fπmρ

ma1

√
m2

a1
−m2

ρ

. (50)

After evaluating, we get fρ ≈ 0.15 and fa1 ≈ 0.06, to be
compared with the experimental value [23] from the decay
ρ0 → e+e−, fρ = 0.20±0.01, and from the decay a1 → πγ,
fa1 = 0.10±0.02. We can also calculate the chiral constant
L10 which appears in the effective chiral Lagrangian [24]
and which is related to the mean-square electromagnetic
pion radius and to the axial-vector pion form factor FA
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for the decay π → eνγ (see, for example, [25]). Namely,
for the ground VA states one gets

L10 =
1
4

(∑
n

f2A,n −
∑

n

f2V,n

)
�

1
4
(
f2a1

− f2ρ
) ≈ −4.7 · 10−3,

to be compared with the result of [3] from hadronic τ -
decays: L10 = −(6.36 ± 0.09|expt ± 0.16|theor) · 10−3.

It is worth mentioning that using the first three CSR
sum rules (33) and the requirement of a fast chiral-
symmetry restoration, one obtains the estimate [7] L10 ≈
−6.0 · 10−3 and, for the electromagnetic pion-mass differ-
ence, ∆m(4)

π |em ≈ 3.85 ± 0.16 MeV, which improves the
agreement between theoretical predictions and the exper-
imental value of ∆mπ|exptem ≈ 4.42 ± 0.03 MeV (with a
contribution due to the isospin symmetry breaking being
taken into account, for details see [7]). Given a value for
L10, one may calculate the pion polarizability αE (see, for
example, [2]). For instance, for L10 ≈ −6.0 · 10−3 one gets
αE = −2.72 · 10−4 fm3, to be compared with the result
of [2] αE = (−2.71 ± 0.88) · 10−4 fm3. Thus, allowance
for the contribution of higher meson resonances can be of
importance in calculating some physical constants.

4 Summary and conclusions

We have shown that the SU(2) Quasilocal Quark Model
with chirally invariant four-fermion vector and axial-
vector vertices including derivatives of fields can serve to
describe the physics of vector and axial-vector meson reso-
nances and their excitations at intermediate energies. The
corresponding mass spectrum for the ground and first-
excited vector and axial-vector boson states was derived
in the mean-field, large-log approximations and in the
chiral limit. The qualitative features of the mass spec-
trum obtained turn out to be the same as in the scalar-
pseudoscalar case [16]: the excited states are logarithmi-
cally heavier than the ground ones and a fast restora-
tion of the chiral symmetry over the scale 1 GeV is pre-
dicted (this fact was confirmed also by our numerical es-
timates: mσ′ −mπ′ � 45 MeV and ma′

1
−mρ′ � 60 MeV).

The comparison with the SU(2) scalar-pseudoscalar QQM
has allowed to obtain two remarkable relations between
boson masses independent of the model parameters (see
eqs. (24), (25)):

m2
a1

−m2
ρ � 3

2
(m2

σ −m2
π),

m2
a′
1
−m2

ρ′ � 3
2

(m2
σ′ −m2

π′).

We obtained the following estimates: ma′
1

= 1500–
1550 MeV (which can be identified with the a1(1640)-
meson [4]) and mσ′ = 1250–1450 MeV (which can be

identified with the bare mass of the f0(1500)-meson [6],
without an admixture of s̄s components).

To realize the correspondence (matching) with QCD
at intermediate energies, where the OPE can be applied,
the chiral-symmetry restoration sum rules were imposed
on the vector–axial-vector SU(2) QQM. For the four-
resonance ansatz some constraints on model parameters
were obtained. The residues for the ground and excited
vector–axial-vector states turn out to be of the same or-
der of magnitude, as opposed to the SP case. The inclusion
of excited states does not change significantly the elec-
tromagnetic decay constants of the ground vector–axial-
vector states as compared with the one-channel results:
fρ � 0.15 and fa1 � 0.06 (see, however, [7]).

The U(3) extension of the scalar-pseudoscalar-vector-
axial-vector QQM is in progress and the preliminary re-
sults can be found in [17,18]. In the vector–axial-vector
sector the agreement with the experimental data [4] turns
out to be within 10% for the vector mesons and 15% for
the axial-vector ones.

Thus, the Quasilocal Quark Model describes reason-
ably well the spectral characteristics for vector and axial-
vector mesons and their first excitations and fits the phe-
nomenology of low-energy meson physics. The matching
to non-perturbative QCD based on the chiral-symmetry
restoration at high energies (CSR sum rules) improves the
predictability of the QQM and leads to some constraints
on its parameters.

Finally, we would like to mention other possible appli-
cations of the QQM. First, such models are thought of as
relevant for the investigations of the behaviour of hadron
matter at high temperatures and nuclear densities in the
region near the restoration of chiral symmetry. One could
expect that the mass-splittings shrink in response to an
increase in the quark density value and, therefore, the ex-
citations become lighter and more important in hadron ki-
netics. Second, the QQM can be used to describe the Higgs
particles in extensions of the Standard Model [26,27].
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